Surface Filling/hr

Other languages:

Surface Filling

Menu location
Surface → Filling
Workbenches
Surface
Default shortcut
None
Introduced in version
0.17
See also
None

Opis

Surface Filling creates a surface from a series of connected boundary edges. The curvature of the surface can be additionally controlled by non-boundary edges and vertices, and a support surface.

The base geometry can belong to curves created with the Draft Workbench or the Sketcher Workbench, but can also belong to solid objects such as those created with the Part Workbench or the PartDesign Workbench.

Two filled surfaces delimited by four edges located on the XY plane. The surface on the right is additionally controlled by a non-boundary edge.

Kako koristiti

  1. Press the Filling button.
  2. The Boundaries task panel opens. See Options.
  3. Select two or more edges in the 3D view:
    • There is no need to press the Add edge button in the Boundaries section at this time.
    • The edges must be selected in consecutive order.
    • The edges must be connected, but the complete boundary need not be closed.
    • The complete boundary should not self-intersect.
    • For a 360° circular boundary two semicircular edges can be selected.
  4. A preview of the final shape will be shown once enough valid geometry has been selected.
  5. Optionally select a Support surface. See Example.
  6. Optionally select one or more Edge constraints.
  7. Optionally select one or more Vertex constraints.
  8. Press OK button.

Opcije

Example

The Support surface acts as an additional constraint for the surface. The following simple example will give you an idea how this works:

  1. In the Part Workbench create a cylinder and set its PodaciAngle to 180°.
  2. Switch to the Surface Workbench and press the Filling button.
  3. Select the two semi-circular edges and the two straight edges that connect them.
  4. The result matches the four boundary edges, but the inner shape is quite different from the cylindrical face.
  5. Edit the Surface object and for the Support surface select the cylindrical face.
  6. The modified shape matches the cylindrical face much more closely.

Svojstva

A Surface Filling (Surface::Filling class) is derived from the basic Part Feature (Part::Feature class, through the Part::Spline subclass), therefore it shares all the latter's properties.

In addition to the properties described in Part Feature, the Surface Filling has the following properties in the property editor.

Data

Filling

Pogled

Base

Scripting

See also: FreeCAD Scripting Basics.

The Surface Filling tool can be used in macros and from the Python console by adding the Surface::Filling object.

import FreeCAD as App
import Draft

doc = App.newDocument()

a = App.Vector(-20, -20, 0)
b = App.Vector(-18, 25, 0)
c = App.Vector(60, 26, 0)
d = App.Vector(33, -20, 0)

points1 = [a, App.Vector(-20, -8, 0), App.Vector(-17, 7, 0), b]
obj1 = Draft.make_bspline(points1)

points2 = [b, App.Vector(0, 25, 0), c]
obj2 = Draft.make_bspline(points2)

points3 = [c, App.Vector(37, 4, 0), d]
obj3 = Draft.make_bspline(points3)

points4 = [d, App.Vector(-2, -18, 0), a]
obj4 = Draft.make_bspline(points4)
doc.recompute()

surf = doc.addObject("Surface::Filling", "Surface")
surf.BoundaryEdges = [(obj1, "Edge1"),
                      (obj2, "Edge1"),
                      (obj3, "Edge1"),
                      (obj4, "Edge1")]
doc.recompute()

# ---------------------------------------------------------
points_spl = [App.Vector(-10, 0, 2),
              App.Vector(4, 0, 7),
              App.Vector(18, 0, -5),
              App.Vector(25, 0, 0),
              App.Vector(30, 0, 0)]
aux_edge = Draft.make_bspline(points_spl)
doc.recompute()

surf.UnboundEdges = [(aux_edge, "Edge1")]
doc.recompute()

# ---------------------------------------------------------
aux_v1 = Draft.make_line(App.Vector(-13, -12, 5),
                         App.Vector(-13, -12, -5))
aux_v2 = Draft.make_line(App.Vector(-3, 18, 5),
                         App.Vector(-3, 18, -5))
doc.recompute()

surf.Points = [(aux_v1, "Vertex2"),
               (aux_v2, "Vertex1")]
doc.recompute()